Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Gang Zhang,* Yuan-Yuan Sun and Xiao-Ming Jiang

Institute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China

Correspondence e-mail: zgzhang@sxu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.098$
$w R$ factor $=0.208$
Data-to-parameter ratio $=11.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Acetonitrile[2-(3,5-dimethylpyrazol-1-yl)-1,3-benzothiazole]dinitratocobalt(II)

The asymmetric unit of the title complex, $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}-\right.$ $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}\right)$], comprises two $\mathrm{Co}^{\text {II }}$ complexes with the same chemical formula but with different coordination behaviour of the nitrate ligands. The geometry of the $\mathrm{Co}^{\mathrm{II}}$ ion can be described as being intermediate between distorted pentagonal bipyramidal and distorted octahedral, whereby O atoms of one of the bidentate coordinating nitrate groups are considered as occupying one coordination site.

Comment

The coordination chemistry of pyrazole-containing ligands has received much attention, owing to their potential role in modelling the active sites of metalloenzymes (Sorrell et al., 1982; Arali et al., 1993). In this paper, we report the crystal structure of the title 2-(3,5-dimethylpyrazol-1-yl)benzothiazole complex of cobalt(II), (I).

Received 16 May 2005
Accepted 6 June 2005
Online 17 June 2005

(I)

Molecular views of each of the two 2-(3,5-dimethylpyrazol-1-yl)benzothiazole cobalt complexes in (I) are shown in Figs. 1 and 2. All bond lengths and angles are within reasonable ranges.

The coordination of Co1 includes atoms N3, O1, O3, O4, O6 forming a plane, with $\mathrm{Co} 1-\mathrm{N} 6=2.090(7)$ and $\mathrm{Co} 1-\mathrm{N} 1=$ 2.118 (6) A. The coordination sphere of Co 2 has atoms N 7 , O7, O9, O10 in a plane, with $\mathrm{Co} 2-\mathrm{N} 9=2.101$ (6) and $\mathrm{Co} 2-$ $\mathrm{N} 12=2.097(7) \AA$. The two $\mathrm{Co}^{\mathrm{II}}$ complexes differ in that one of the coordinating nitrate groups binds to Co in either a monodentate or a bidentate mode. However, as shown in Figs. 1 and 2, the two $\mathrm{Co}^{\mathrm{II}}$ atoms present almost the same geometry if the N atoms of the NO_{3} groups are considered instead of the coordinating O atoms. Several authors have proposed that the bidentate nitrate anion could be considered as occupying one coordination site (Cotton et al., 1963; Locher et al., 1987), so in such a case, the two Co atoms might be regarded as having a trigonal-bipyramidal environment. However, we prefer to

Figure 1

A molecular view of complex A, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A molecular view of complex B, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
consider that the geometry of the $\mathrm{Co}^{\mathrm{II}}$ ions is better described as being intermediate between distorted pentagonal bipyramidal, in which the two NO_{3} groups behave as bidentate
ligands (molecule A, Fig. 1), and distorted octahedral, in which one of the nitrate groups behaves as a monodentate ligand (molecule B, Fig. 2).

Experimental

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China. 2-(3,5-Dimethylpyrazol-1-yl)benzothiazole was first prepared by published procedures (Arali et al., 1993). 2-(3,5-Dimethylpyrazol-1yl)benzothiazole $(15 \mathrm{ml}, 0.001 \mathrm{~mol})$ and $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml}$, 0.001 mol) were each dissolved in hot acetonitrile, and then mixed together and refluxed for 4 h . The reaction mixture was then filtered and the filtrate was allowed to stand at room temperature for several days, affording red crystals of (I).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}\right)\right]$	$Z=4$
$M_{r}=453.30$	$D_{x}=1.651 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.407(4) \AA$	Cell parameters from 3897
$b=10.776(4) \AA$	\quad reflections
$c=18.174(7) \AA$	$\mu=2.3-27.0^{\circ}$
$\alpha=84.279(5)^{\circ}$	$T=293(2) \mathrm{Km}$
$\beta=86.952(5)^{\circ}$	Block, red
$\gamma=84.890(5)^{\circ}$	$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$
$V=1824.1(12) \AA^{\circ}$	

Data collection

Bruker SMART 1K CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.733, T_{\text {max }}=0.810$
7293 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.098$
$w R\left(F^{2}\right)=0.208$
$S=1.20$
6103 reflections
511 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0478 P)^{2}\right. \\
& \quad+16.6816 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.20 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

H atoms attached to C atoms were placed in geometrically idealized positions, with $\mathrm{Csp}{ }^{3}-\mathrm{H}=0.96 \AA$ and $\mathrm{Csp}{ }^{2}-\mathrm{H}=0.93 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}$ (methyl C) or $1.2 U_{\text {eq }}$ (other C).

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

The authors acknowledge the National Natural Science Foundation of China (Project No. 30470408) and Natural Science Foundation of Shanxi Province (Project No. 20041012) for financial support.

metal-organic papers

References

Arali, V. H., Revankar, V. K. \& Mahale, V. B. (1993). Transition Met. Chem. 18, 158-162.
Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Cotton, F. A., Goodgame, D. M. L. \& Sonderberg, R. H. (1963). Inorg. Chem. 2, 1162-1165.

Locher, K., Blonk, H. L., Driessen, W. L. \& Reedijk, J. (1987). Acta Cryst. C43, 651-653.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Sorrell, T. N., Malachowski, M. R. \& Jameson, D. L. (1982). Inorg. Chem. 21, 3250-3252.

